
Multimedia-Based Visual Programming Promoting Core
Competencies in IT Education

V. J. Manzo
Boyer College of Music

Temple University
Philadelphia, PA 19122

1-973-655-7212

vj@vjmanzo.com

Matthew Halper
Conservatory of Music

Kean University
Union, NJ 07083
1-908-737-4337

halper@kean.edu

Michael Halper
Information Technology Department

NJIT
Newark, NJ 07102
1-973-596-5752

michael.halper@njit.edu

ABSTRACT
Programming constitutes one of the core competencies demanded of
any IT education. However, some students within certain
specializations of this diverse discipline are inclined to question the
need for programming. The use of a visual programming
environment in the development of interactive multimedia
applications can serve the dual purposes of getting students excited
about programming and giving them the core knowledge they need.
The visual language Max/MSP/Jitter (“Max”), geared toward
music, audio, and video application programming, is introduced as
an excellent vehicle toward achieving this goal. The foundational
constructs of Max are introduced in a series of example programs
dealing with music applications. Some details of an undergraduate
IT course called “Interactive Music System Technology” that
utilizes Max are presented. Overall, the use of Max in the
undergraduate IT curriculum can enhance the student’s experience
(both in multimedia and in IT in general) and promote better
programming skills.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – classes and objects, control structures.

General Terms: Languages.

Keywords: IT Programming, Max/MSP/Jitter, Visual
Programming Language, Multimedia, Digital Audio, Computer
Music

1. INTRODUCTION
Programming—particularly the ability to do it well—is one of the
pillars of IT education and a skill essential for the aspiring IT
professional [1]. However, with a diverse array of specializations
within this burgeoning field, some students question their need to
acquire this skill. How often is it heard: “I switched to IT because I
don’t like to program”? Of course, students quickly learn that
programming follows them everywhere in their computing pursuits,
from socket programming in the networking environment to
scripting in game development. And with the explosion of apps and
app development, it is becoming clearer to students that this is
knowledge they must obtain.

Multimedia is a popular specialization within IT education that can
lead to careers ranging from 3D artist and game designer to audio
engineer and marketer. This is one area where students might
especially question programming requirements. However, a vast
amount of exciting work emerging from the multimedia field is
custom program-based application development. In particular, a
visual programming language named Max/MSP/Jitter (“Max,” for
short) [2,3] has gained widespread acceptance and a large user base
in multimedia. Max can be utilized for many different multimedia
tasks, including music, digital audio, and video. The IT educator
will find it very useful in a variety of settings.

In this paper, we introduce some of the foundational aspects of Max
that make it an excellent vehicle for teaching programming and
data-flow to IT students. Within the IT program at the New Jersey
Institute of Technology, we are piloting a course called “Interactive
Music System Technology” that makes use of this language to write
custom software for musical and audio interaction. While the course
is primarily intended for multimedia specialists, we envision it as
being of interest to all IT majors. A goal of the course is to change
students’ perception of programming from that of meaningless
drudgery to an exciting endeavor. The students will experience first-
hand what inspiring products visual programming can achieve—
through their own imagination and creativity. Overall, the course
represents a synergy between multimedia application development
and the obtainment of the core programming competency required
of the IT student. The content of this course is discussed.

2. BACKGROUND
An interactive music system is a combination of hardware and
software that allows an individual to accomplish a musical/audio
task, typically in real-time, through some kind of interaction.
Though commonly associated with composition and performance,
the tasks associated with such systems can include analysis,
instruction, assessment, sound synthesis, etc. These systems have
switches, keys, buttons, and sensors (in hardware and/or software)
for real-time control of musical elements like harmony, rhythm,
dynamics, and timbre.

Max is a programming language optimized for use in developing
interactive music systems and other multimedia implementations
[3]. Its extension Jitter was introduced for video processing tasks.
Unlike traditional text-based programming languages, Max follows
a visual programming paradigm. A Max program visually
represents data-flows from one programming element (object) to
another. For example, consider the audio signal chain involved in
recording on your computer using a microphone and playing back
via some speakers (Figure 1). Sound captured by the microphone is
transmitted through a cable to the sound card, which in turn
transmits the data to the computer’s memory via another cable. On

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGITE’11, October 20–22, 2011, West Point, New York, USA.
Copyright 2011 ACM 978-1-4503-1017-8/11/10...$10.00.

the other side, cables are used to transmit the data to the speakers. In
Max, each component in the figure would be denoted as an object, a
programming element with a particular purpose. Data in the form of
MIDI codes, audio, video, text, etc., are transmitted between objects
through the use of connecting cables called patch cords in Max
parlance.

Figure 1. Audio signal flow diagram

Other data-flow environments aside from Max exist for music and
multimedia applications, including Pure Data (Pd) [4], OpenMusic
[5], Isadora [6], and Reaktor [7], to name a few. These
environments also allow for modular programming, where reuse
can be accomplished by graphically mapping the flow of data from
one code module to another. We also find graphical programming
development platforms in other areas. For example, LabVIEW [8]
is used to build scientific measurement, test, and control systems.

MIDI is a protocol for conveying musical messages. Synthesizers as
well as nearly all computer music software applications deal with
MIDI in some way. In essence, MIDI is a bunch of messages in
which 8-bit numbers (encapsulating 7-bit data representations, i.e.,
0–127) are used to represent musical elements like pitch and
velocity. The lowest MIDI note 0 is the pitch C at five octaves
below middle C. The number 1 is the C#/Db directly above that C,
and so on. The MIDI note 12 is the C an octave (twelve half-steps)
above the lowest C. Velocity is a measure usually associated with
(note) volume represented by the same numbers 0–127. The value 0
usually means that the note is silent, whereas the value 127 is the
loudest volume. Therefore, the note 60 with a velocity of 127 could
be described as middle C at a very loud volume.

3. PROGRAMMING CONSTRUCTS OF
MAX
The Max programming environment is really just a canvas on which
objects are organized into a model of data-flow. Data is transmitted
from object to object through the patch cords at run time. A
collection of interconnected objects and associated patch cords is
called a patch (really, a visual program). Graphically, each object is
represented as a circle or round-edged rectangle, and a patch cord is
a thin black connecting line. At the top of each object, we find one
or more inlets that accept input from other objects via patch cords.
At the bottom of objects are outlets that allow for subsequent output
along other patch cords. Max includes an extensive built-in library
of classes from which a large variety of objects can be instantiated.
These objects range from simple numbers and text to complex
multimedia entities such as audio signals and visual matrices. Many
of these objects model the standard control structures of a high-level
programming language. (Let us note that Max does not use the term
“class” to describe this arrangement as found in traditional object-
oriented programming languages such as C++ and Java.) In the
following, we present some of the fundamental constructs of Max
through a series of example patches dealing with creating random
music.

A small sample patch consisting of three objects and two patch
cords can be seen in Figure 2. The middle object called random is
shown with the added argument 128. It outputs a random number
between 0 and 127 when it receives an event message in its left
inlet. The small circular object above random is a button object, a
user interface component that sends out event messages called
“bangs” when a user clicks on it. The number object shown beneath
random simply serves to display the numerical value generated by
random when a user requests it via a click.

 
Figure 2. Max patch to output a random number (0–127)

With the Max objects in Figure 2, we are able to generate random
numbers that can be used as MIDI pitches. We can wrap these into
MIDI messages along with the velocity information and note
duration using the MAX object makenote (Figure 3). This object
takes two numbers as arguments to specify the default velocity (first
argument) and default duration in milliseconds (second argument)
that will be associated with the random pitch value. The note will
last until makenote sends out a velocity 0 value to turn it off, as
indicated by the bottom-right object in Figure 3. Overall, the patch
in Figure 3 will produce a random MIDI note (with velocity 100
and duration 500 milliseconds) on demand with a click of the button
at the top. This patch nicely demonstrates the fundamental
constructs of input/output, data structuring, and time management
within the Max framework.

 
Figure 3. Format a MIDI message using a random number as

pitch

At the moment, the patch in Figure 3 simply displays the random
pitch (bottom left object). Of course, in the context of music system
development, it is much more appropriate to have the note actually
played. This can be done using the noteout object, as seen in Figure
4, which sends the formatted MIDI message to the computer’s
sound card where it is synthesized into an actual note.

Figure 4. Send a random note to the sound card

As an extension, let us look at a patch that automatically generates a
new random note each half second. This can be managed with the
use of a metro object (Figure 5) that acts like a metronome and
sends out “bangs” at a specified interval of time. The metro in
Figure 5 bangs at an interval of 500 milliseconds.

 

Figure 5. Metronome object to output a “bang” every 500
milliseconds (not connected to other code)

The square above the metro object is another user interface object
called a toggle, which, when clicked by the user, turns metro on or
off. Patching together the random note generator of Figure 4 with
the metro and toggle combination of Figure 5 gives us our desired
patch, shown in Figure 6.

When the user clicks on the single toggle object, random pitches are
played every half second. When the toggle is clicked off, the pitch
creation ceases.

 

Figure 6. Toggled random pitch playback

Supplying arguments to objects via additional number objects
allows users to manipulate arguments in real-time. In Figure 7,
number objects (with current values of 300) connected to metro and
makenote control, respectively, the speed and duration of generated
pitches. A user can change these simply by typing in new numbers.
Let us point out that the numerical argument value, serving as the
default (e.g., 500 within metro), will not change visually within the
object’s appearance in the patch. However, that value will not be
used as long as a positive number is fed into its inlet. The default
value of 500 will again be used when the patch is closed and later
reopened (re-run).

 

Figure 7. Changing default arguments of metro and makenote

More intuitive graphical control can be obtained with the use of a
slider object patched into the two number objects (Figure 8). A
single slider is used to keep the arguments in sync. Separate sliders
could be used for each value.

 

Figure 8. slider control of argument values

Figure 9. On/off toggle based on the spacebar

As an extension to demonstrate a programmatic selection (if-else)
structure, consider the partial patch shown in Figure 9. The key
object gets the ASCII key number on a key press by the user and
outputs it. For example, when the user hits the spacebar (ASCII
value 32), a value of 32 emerges. (In this patch, the value is
displayed by the number object beneath key, though that is not
required.) The output of key is delivered to the select object, which
performs a comparison with the value 32. If the input value = 32,
the select will send a bang from its left outlet triggering a message
box containing the number 1 to send that value 1 to the toggle to
turn it on. Otherwise, select will send a bang from its right outlet
triggering a message box with 0 to send out that value to the toggle
in order to turn it off. (Note that this is a slightly different use of the

toggle from that used above; it is being controlled directly by other
objects rather than being clicked by the user.) As we see, if-else is
implemented as an object in Max. Interestingly, the results of the
selection are alternate “bangs” that emanate from the object. Thus,
the programmer can get real tangible feedback in the formulation
and execution of such a foundational programming construct. More
elaborate selection statements encompassing more extensive
conditions and clauses can be built with this and other objects in
Max including expression and if objects.

Figure 10. counter object detects 100 bangs from metro and
stops the loop

Max, of course, accommodates looping, as demonstrated by the
patch in Figure 10. This patch generates 100 random notes and then
terminates. This is achieved by the use of a counter object that
counts the number of bangs sent from metro to random. When
counter reaches 100, the select object beneath counter will cause the
message box containing 0 to send the value 0 to the toggle above
metro, thus turning it off. Let us point out that this random-note
loop is initiated by a press of the spacebar as in Figure 9.

4. AN IT UNDERGRADUATE COURSE
BASED ON MAX
Max is being used as the development vehicle for a course titled
“Interactive Music System Technology” that is being piloted in the
Information Technology Department at the New Jersey Institute of
Technology. At present, the course only requires that the student has
taken the introductory IT sequence, which affords them some
familiarity with a high-level programming language. However,
knowledge of high-level programming is not mandatory for this
course. No music background is assumed, though it is beneficial. IT
aspects of the music/audio domain are emphasized throughout the
course.

As noted, one of the primary goals is to get students comfortable
with, and indeed excited about, programming as the means to
achieving interesting and important results in IT. In particular, the
students learn how to write custom software to create interactive
music systems. Substantial projects based on Max are required of all
class members. Foundational topics include digital music/audio
protocols and representations (e.g., MIDI and OSC), synthesis,
sequencing, and signal processing. Beyond that, emphasis is placed

on the development of interactive software for music creation and
processing using algorithmic techniques in the context of Max. The
many applications of interactive music software, such as music
composition and performance, live audio installations, creation of
new musical instruments, music analysis, scoring for film and
multimedia, and instructive and assistive technologies, are covered.

The specialized IT hardware used to support the interactive software
is considered. Interaction techniques with devices beyond the mouse
and keyboard, such as the use of camera tracking, pitch tracking,
video game controllers, sensors, and mobile devices, are explored.
Some of Max’s video processing is also dealt with in the course.

A laboratory of iMacs equipped with external MIDI keyboards is
being used for the course. In addition to Max, software synthesizers
and digital audio workstation applications are incorporated to
introduce interactive performance and composition.

5. DISCUSSION
Max is a powerful visual programming language for IT multimedia
specialists looking to design customized software for audio and
music (as well as video) applications. It offers a very intuitive
programming paradigm that reflects the flow of data from one
structure to another. In fact, everything in Max is implemented as an
object, which, in addition to graphically rendering basic
programming constructs, promotes object-oriented thinking and
object-oriented approaches to problem solving. As such, Max is an
excellent vehicle for teaching programming skills and providing IT
students with the core competency in programming they need.
Beyond the multimedia specialist, a course based on Max would
benefit all IT students, and perhaps computing students in general.
Moreover, since Max/MSP/Jitter is optimized for music and video
applications, students using it will be able to create exciting
applications right from the start, instead of having to deal with the
classic data crunching projects often assigned in the fundamental
programming courses. As an additional benefit, the Max
environment supports rapid prototyping and can give students the
satisfaction of immediate feedback on their work.

Although Max is robust, the Max SDK allows users to write their
own objects in C++ to extend the language. In addition, there is
support for JavaScript within the environment. Third-party objects
have also been written to encapsulate other languages such as Lisp
and CSound within Max [3]. This flexibility offers IT students
further opportunities to enhance their programming skills by adding
their own customized features to the language.

Max has been deployed in a wide variety of multimedia
applications. EAMIR [9] is an interactive music system and open-
source software project that allows individuals to create music
without the physical and technical limitations found in performing
on traditional musical instruments. Software is designed in Max to
allow individuals to create music by using physical gestures or
interfaces such as game controllers (Wii remotes, Guitar Hero
controllers, DDR pads, etc.), cameras, sensors, and more. IMTCP
[10] was a research project for teaching music to students who had
no prior musical knowledge by using software-based musical
instruments. The Modal Object Library [11] is an open-source
collection of third-party objects written to extend Max. The library
provides tools for filtering random numbers to notes from selected
musical scales and provides a framework for chord creation,
algorithmic composition, interactive music installations, and
performance. Other Max projects include composition and
performance [12], video game integration, education, and research
(see, e.g., [13]), and musical instrument design [14]. All these

application areas are fertile ground for student projects within the
purview of an IT class or, for example, for capstone projects in the
overall IT curriculum.

Of course, the issue of teaching introductory programming,
particularly object-oriented programming, has been the focus of
much research over the years and has been written about
extensively in various forums, e.g., in the context of the ACM’s
SIGCSE. And a variety tools have been developed for the express
purpose of teaching programming. BlueJ [15,16] is a popular
example whose approach centers on the visualization of classes and
objects and allows for interactive manipulation of objects by
students without the need for constructing cumbersome “driver”
apparatuses. However, BlueJ is expressly not a vehicle for GUI
building and is not concerned with multimedia applications per se.
The “MediaComp” approach [17] uses the manipulation of
multimedia elements to inspire students (both computing and non-
computing) to learn programming. For example, loops in Python
[18] are deployed in the service of modifying pictures and sound.
The Max language, on the other hand, is a full-blown visual
language for building multimedia applications, with a built-in suite
of objects for representing and manipulating music, sound, and
video. From the examples of its use described herein, Max can be
seen as another component in the repertoire of pedagogical
programming tools, one that is particularly well-suited for the IT
student as opposed to the traditional computer science student.

Admittedly, studies would need to be conducted to determine the
actual efficacy of Max in motivating students who would not
otherwise be inclined to program to pursue this endeavor with
enthusiasm. Moreover, it would be appropriate to analyze the
effectiveness of Max in promoting students’ fundamental
understanding of programming constructs and to compare the
results with other approaches. But, in the context of our piloted
course, the goal is not just programming but interactive multimedia
system development, and Max—a professional development
language—has been well tested in this regard by an extensive user
community.

6. CONCLUSION
Programming is one of the core competencies of any undergraduate
IT student. The Max visual programming language, used widely in
the digital music/audio field, has been proposed as an excellent
platform from which to provide IT students with this requisite skill.
The fundamental constructs of the Max language have been
presented, and an IT course, “Interactive Music System
Technology,” using Max as the vehicle for software development
has been discussed. Overall, the Max visual programming
environment and its focus on multimedia applications promises to
make IT students excited about the potential that programming
holds and encourage them to pursue it more vigorously. While such
a course has been proposed as a core component of a multimedia
specialization in IT, we see it as enhancing any undergraduate IT
curriculum.

7. REFERENCES
[1] B. M. Lunt, J. J. Ekstrom, Sandra Gorka, et al. Information

Technology 2008: Curriculum Guidelines for Undergraduate
Degree Programs in Information Technology, ACM and IEEE
Computer Society, November 2008, available at
http://www.acm.org/education/curricula-recommendations.
Accessed May 3, 2011.

[2] Max - Cycling 74, available at
http://cycling74.com/products/maxmspjitter. Accessed May
12, 2011.

[3] V. J. Manzo, Max/MSP/Jitter for Music, Oxford University
Press, New York, 2011.

[4] Pure Data - Pd Community Site, available at
http://puredata.info. Accessed May 25, 2011.

[5] OpenMusic, available at
http://repmus.ircam.fr/openmusic/home. Accessed May 27,
2011.

[6] TroikaTronix - Isadora, available at
http://www.troikatronix.com/isadora.html. Accessed May 27,
2011.

[7] Reaktor, available at http://reaktor.en.softonic.com. Accessed
May 27, 2011.

[8] NI LabVIEW, available at http://www.ni.com/labview.
Accessed July 30, 2011.

[9] EAMIR, available at http://www.eamir.net/forum. Accessed
May 10, 2011.

[10] Interactive Music Technology Curriculum Project (IMTCP),
available at http://www.imtcp.org. Accessed April 29, 2011.

[11] Modal Object Library, available at
http://www.vjmanzo.com/mol. Accessed May 25, 2011.

[12] R. L. Dubois. Applications of Generative String-Substitution
Systems in Computer Music. Doctoral dissertation, Columbia
University, New York, NY, 2003.

[13] Adaptive Use Instruments Project. Deep Listening Institute,
available at http://deeplistening.org/site/adaptiveuse. Accessed
May 30, 2011.

[14] A. Chowdhury, S. Cho, and U. Chong. Musical controller for
wind instrument using Max/MSP software and ATmega128. J.
Acoustical Society of America, 129(4): 2543, 2011.

[15] BlueJ - The Interactive Java Environment, available at
http://bluej.org. Accessed August 9, 2011.

[16] D. J. Barnes and M. Kölling, Objects First with Java: A
Practical Introduction using BlueJ, 4th Edition, Pearson, Upper
Saddle River, NJ, 2008.

[17] Media Computation Teachers Website, available at
http://MediaComputation.org. Accessed August 9, 2011.

[18] M. Guzdial and B. Ericson, Introduction to Computing and
Programming in Python: A Multimedia Approach, 2nd Edition,
Pearson, Upper Saddle River, NJ, 2010.

